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The present study addresses the interaction effects of spatiotemporal dynamics of air pollutants and climate parameters, 
under urban heat island (UHI) amplified by heat wave (HW) on the incidence and lethality of COVID-19 viral infection in the 
test site Tokyo metropolis, capital of Japan. July-September periods of 2020, 2021, and 2022, were comparatively 
statistically analyzed based on time series of satellite MODIS Terra/Aqua Land Surface Temperature (LST) and total 
Aerosol Optical Depth at 550 nm (AOD) data, together with in-situ air pollutants and climate monitoring data. During 
persistent stable anticyclonic weather conditions of summer 2022, this research found high positive Spearman correlations 
between maximum air temperature at 2 m height (Tmax) and the daily COVID-19 incidence (DNC)and lethality cases (DND), 
expressed by DNC (r = 0.81; p ≤ 0.05) for DNC, and respectively DND (r = 0.38; p ≤ 0.05) for DND, which together with 
positive correlations between LST and COVID-19 incidence DNC (r = 0.39; p ≤ 0.05), and lethality DND (r = 0.18; p ≤ 0.05), 
may explain the highest recorded rates of COVID-19 new cases and deaths, attributed to the increased urban heat and air 
pollution in Tokyo. Despite of intense ultraviolet solar radiation, which can obstruct viral intensity, and several restrictions 
and control policies, under summer high temperatures attributed to co-occurrence of HW and UHI, the daily new COVID-19 
incidence cases increased in the summer of 2022 in Tokyo by 7.7 times than in the summer of 2021, and by 80.2 times 
than in the summer of 2020.  
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1. Introduction 
 
Global climate change is one of the prime concerns in 

the contemporary world, mainly due to the increased 

urbanization, which is responsible for the urban heat island 

(UHI) effect, where the temperature of the city core is 

warmer than its rural surroundings, affecting inhabitants' 

lives. Satellite remote sensing optical data has proved to be 

a valuable tool for studying the phenomenon, its physics, 

and its correlations with summer heat waves (HW), and 

the potential role of urban thermal environment in the 

transmission of viral pathogens during pandemic events, 

often interacting climate variables that determine the 

survival rate of these viruses in air. Also, during recent 

years, there has been a growing use of satellite 

measurements in the field of urban air quality and public 

health assessments. 

Despite the announced end of the emergency phase of 

COVID-19 in May 2023 by the World Health 

Organization, according to U.S. CDC Centres for 

Disease Control and Prevention, COVID-19 disease 

produced by SARS-CoV-2 pathogens continues till now 

(June 2025) to spread with new subvariants [1]. The 

ongoing global COVID-19 pandemic, declared in early 

March 2020, spanning more than five years and several 

seasons, attests the significant effects of the climate and 

environmental factors in the viral infection airborne 

diffusion route, mostly in agglomerated urban areas. The 

understanding of the environmental factors in the 

pathogenesis of viral infections is reaching high 

significance in the context of climate change. In the 

summer of 2022, Japan and its metropolis Tokyo, selected 

as a study case, faced the most severe heat wave in 150 

years and the worst COVID-19 pandemic wave, when the 

mean temperature was 0.91 °C warmer than normal, with 

several consecutive days above 35 °C [2]. The heat wave 

of summer 2022 in Japan began on 28 June and lasted 

until 25 August, and was the hottest heat wave in Japanese 

history since records began in 1875. This extreme climate 

event was attributed to the synergy of climate change and 

La Niña conditions, with a high-pressure system of June 

2022 over the Pacific Ocean, resulting in a south-to-south-

westerly flow of air which transported hotter air from the 

tropics to Japan, and fueled higher temperatures. Tokyo 

metropolitan area, located in the eastern part of Japan 

experienced record-breaking temperatures attributed to the 

co-occurrence of HW and UHIs phenomena. UHI 

phenomena observed in the Tokyo metropolis, are mainly 

attributed to wind flow blocked by too many tall buildings 

(more than 167 skyscrapers taller than 150 meters, many 

more than 550 buildings over 100 meters, and more under 

construction), and the materials in buildings which could 

increase the air temperature [3]. Some large-scale 

circulation anomalies connected to heat waves and 

typhoons are recorded every year. In the mega-city of 

Tokyo, the accelerated rate of HWs under UHIs increased 

https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic
https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic
https://en.wikipedia.org/wiki/La_Ni%C3%B1a
https://en.wikipedia.org/wiki/Pacific_Ocean
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from 2003 to 2020 [4]. As a consequence, during COVID-

19 viral infection were exacerbated the challenges faced 

by urban residents' health. Consequently, an accurate 

assessment of summer urban heat described through UHI 

and HW intensity, and a better understanding of driving 

factors have become imperative issues to be used by 

public health decision-makers, to urgently develop 

prevention and mitigation strategies for periods of 

infectious diseases under HWs.  
While due to large spatial heterogeneity and the lack 

of dense weather station networks, meteorological data 

cannot be effectively used to measure the UHI effect, 

remote sensing offers a useful way to track, measure, and 

manage the UHI effect [5,6]. Remote sensing 

technologies, which provide the derived environmental 

variables, have already been used in different 

epidemiologic studies [7,8], but so far only rarely in the 

context of viral pandemic diseases. In recent decades, 

satellite remote sensing platforms deliver products with 

high spatial and temporal resolutions, among which global 

land surface temperature (LST) observations in the 

thermal infrared, with spatial resolutions of less than 2 km. 

MODIS Terra/Aqua long-term operational satellites have 

provided valuable LST data (MOD11) for over two 

decades. Recently, the Sentinel-3 mission has provided 

new large-scale satellite LST products for global land and 

sea surface temperatures using three thermal infrared 

bands. Multi-spatial and multi-temporal remote sensing 

data have been widely used to monitor and analyze the 

dynamics of UHIs and HWs [9-11]. Satellite remote 

sensing approaches and MODIS Terra/Aqua time series 

data are suitable for the assessment of Land surface 

temperature (LST) parameters and UHI phenomenon, 

suggesting that thermal characteristics and landscape 

associated with thermal patterns are dependent on urban 

composition, and its configuration of land cover [12-

14]. Several studies exploring worldwide cities found 

interesting results regarding the urban thermal 

environment and its relation with urban morphology and 

land cover [15,16]. However, the existing studies on the 

urban heat island (UHI) and heat wave (HW) effects on 

the urban thermal environment have primarily focused on 

their temporal space distribution characteristics 

[6,7,17,18], with less focus on the influences of other 

environmental factors, particularly during pandemic 

events. 

This study explores the synergism between urban heat 

island (UHI) phenomena under summer heat waves 

(HWs), and poor urban air quality together with climate 

conditions on the fast transmission of COVID-19 disease 

during 2020-2022 with a focus on the summer periods of 

2020, 2021, 2022 years in the Tokyo metropolis. To 

address these research gaps the crucial role of the main air 

pollutants was examined  (particulate matter in two size 

fractions 2.5 µm -PM2.5, and 10 µm -PM10, ground-level 

ozone- O3 and nitrogen dioxide- NO2), associated with 

related-climate variables responsible for urban heat stress), 

which may amplify the SARS-CoV-2 viral pathogens' 

impact on the human cardiorespiratory system, and the 

COVID-19 disease spatiotemporal dynamics pattern. 

Through applied statistical and time series analyses of the 

daily observational monitoring and satellite data acquired 

during three summer seasons over the investigated period, 

this study provides an accurate assessment of the linkage 

between urban air quality related to climate factors 

variability (daily mean-T and maximum air temperature -

Tmax at 2 m height, air relative humidity-RH, wind speed 

intensity-w, global horizontal solar surface irradiance- 

GHI, planetary boundary layer-PBL height, and land 

surface temperature-LST) and epidemiologic evolution of 

the daily new COVID-19 cases-DNC and the daily new 

COVID-19 deaths-DND in Tokyo metropolis. The optical 

parameter total aerosol optical depth (AOD) at 550 nm, 

which expresses the sunlight attenuation by the column of 

aerosols, was selected to characterize the aerosol loading 

in the lower atmosphere over Tokyo. To highlight the 

impact of heat stress on viral infection transmission and 

lethality, this study compared the main air pollutant 

concentrations and climate parameters variability during 

the summer pandemic periods of 2020-2022. As Tokyo is 

among the most diverse, populated, dense, and transit-

based cities in the world, it is an ideal test site for the study 

of extreme urban heat impact on viral disease 

transmission. 

 
 
2.  Materials and methods 
 
2.1. Urban thermal environment    

 

As mesoscale phenomena, which transport warm air 

from the upper atmosphere to the lower atmosphere, HWs 

influence the urban environment, its infrastructure, and 

human health [19,20]. Heat waves refer to positive 

anomalies or extremes above the daily mean air 

temperature, which can be recorded during several 

consecutive days (from days to weeks and even continue 

for months) in certain geographical contexts. Rapid 

urbanization is a crucial driver of landscape transformation 

with a significant impact on ecosystem resilience affecting 

the local climate and aggravating heat stress. The loss of 

vegetation plays a major role in altering land cover, which 

in turn influences carbon emissions and urban 

microclimates, such as the debut of the urban heat island 

(UHI) effect (urban/non-urban temperature differences), 

which may amplify the regional heat load during heat 

wave events. UHIs are classified into two classes: surface 

urban heat islands (SUHI), evaluated using land surface 

temperature (LST), and atmospheric urban heat islands, 

defined on air temperature at canopy level (CUHI) or at 

the urban boundary layer (UBL). However, SUHIs and 

CUHIs show similar dependencies on local climate and 

urban morphology, exhibiting a positive correlation and 

comparable trends [21]. The UHI intensity depends on the 

land surface energy budget variables: temperature and 

emissivity, land surface albedo, surface downward 

insolation, sensible and latent heat fluxes, longwave 

downward radiation, and ground heat flux. Complex 

interaction processes of shortwave and longwave radiation 

with aerosols, moisture, and other gaseous pollutants in 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing-technology
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing-technology
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/remote-sensing
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highly urbanized regions have a strong impact on UHI 

intensity [22,23]. In the current context of global climate 

warming due to increased urbanization and the COVID-19 

pandemic challenge worldwide, hot summer temperatures 

and poor air quality become a significant concern for 

human health in densely metropolitan areas. During the 

last decades, global air temperature, and pollution have 

risen significantly, exacerbating intrinsic impacts on 

human health through affecting the immune system. [24-

26]. Extreme urban heat attributed to the synergy of the 

UHI phenomenon and heat wave (HW) events is a 

progressively presenting issue, especially in several 

metropolitan regions of the world regarding occurrence, 

intensity, and duration. Exposure to extreme heat 

particularly in large urban settings can lead to a high range 

of effects at different levels: on health (heat-related 

illnesses in people with pre-existing medical conditions); 

economic needs for increasing power supply and 

concentration of heat-emitting sources; and the natural 

environment by damaging vegetation growth. UHIs and 

within-city micro-heat islands can amplify the effects of 

heat waves and increase the risk of advancing heat-related 

illnesses (like dehydration, heat exhaustion, and 

hyperthermia), significantly during pandemic events 

[27]. Some of these effects can be exacerbated in a densely 

urban region affected by low vegetation land cover, 

and the prevalence of impervious low-reflectivity surfaces, 

which increase UHI effects [28,29]. Urban extreme heat 

recorded in recent years is a significant issue that has 

gained great interest in the scientific world, especially 

concerning air pollution and human health in different 

health-related studies [30,31]. Several epidemiological 

studies have demonstrated the adverse health effects of 

short-term and long-term exposure to poor ambient air 

quality, and high ambient temperature under heat waves 

on non-accidental mortality, as major environmental risk 

factors associated with increased cardiorespiratory 

mortality [32,33]. Also, some global-scale epidemiological 

studies revealed the increased risk of mortality from 

extremely high temperatures, and summertime heat 

associated with viral infections [34,35]. Excess mortality 

related to the SARS-CoV-2 virus associated with high 

temperature was shown to be increased during the 

COVID-19 pandemic in some urban areas [36,37]. As 

presently, climate change is leading to the increased 

frequency of heat waves as extreme summer climate 

events and associated increasing number of viral infectious 

diseases, is an urgent need to act for human health and life 

protection. Based on climate projections, some studies 

reported future increasing rates of heat-related illness 

worldwide [38-40], particularly in Japan due to an aging 

society [41-44]. Among these, the urban thermal 

environment, which is described by several atmospheric 

variables (such as surface solar irradiance, wind speed 

intensity and direction, and air humidity) has a great 

influence on the human thermal environment defined by 

human metabolic thermoregulation in combination with air 

temperature high impacted by summer heat waves [45-47].  

Several atmospheric and biometeorological (thermo-

physiological) variables have been proposed for the 

thermal environment analysis and its effects on human 

thermal comfort [48]. As a vital function of the human 

autonomic nervous system in response to heat stress, 

thermoregulation mechanisms are strongly influenced by 

exposure to extremely high temperatures during summer 

heat waves through the development of heat-related 

illnesses (general medical, neurological, 

and pharmacological). Some studies used daily maximum 

temperature to estimate the human body's reaction to 

urban heat stress, while other researchers considered 

apparent temperature, which combines meteorological 

variables: temperature, humidity, and wind speed [49,50].   

This study uses daily maximum temperatures, having 

the advantage of accounting for local differences in Tokyo 

urban climatology.  

 

2.2. Satellite remote sensing data used for urban  

        thermal environment analysis 
 
Satellite remote sensing technology, with its unique 

spatial coverage advantages and multitemporal, 

multisensor and multi spatial observation capabilities, has 

become an essential tool for urban thermal environment 

research. Different methodologies use time series satellite 

data to estimate the urban thermal environment and UHI 

phenomenon. Previous studies employed satellite data 

from Moderate Resolution Imaging Spectroradiometer 

(MODIS) Terra/Aqua, Sentinel-2, Sentinel-3, and Landsat 

5, 7, and 8 to compare day/night climatic conditions in 

metropolitan areas and their suburbs to estimate the UHI 

intensity, and retrieve the land surface temperature (LST). 

Several biogeophysical and radiative parameters from 

different optical sensor observations provide 

corresponding parameter products, as well as can estimate 

UHI based on the temperature difference between urban 

and rural areas [51,52]. LSTs retrieved from the time 

series thermal infrared (TIR) satellite remote sensing 

bands with frequent coverage provide key indicators to 

estimate the UHI effect in high spatial and temporal 

resolution. Some limitations are related to adverse 

atmospheric conditions and long revisit satellite cycles, in 

the thermal environment.  

Other studies used the synergy of microscale and 

mesoscale urban climate models to describe the diurnal 

UHI cycle and its spatiotemporal patterns, using satellite 

imagery datasets from MODIS Terra/Aqua, Landsat, and 

Sentinel-2. However, the latest MODIS Collection-5 LST 

data are used to evaluate the geographic variations of the 

diurnal and seasonal UHI phenomenon.  By this, remote 

sensing has advanced urban thermal environment research 

through enabling spatiotemporal analysis and addressing 

methodological challenges and knowledge gaps. Present 

study used MODIS Terra/Aqua LST and AOD time series 

data. 

      Developed proper algorithms can be used to 

quickly retrieve surface radiative data sets, but for better 

accuracy need local calibration and validation. 

Mathematical algorithms generally incorporate all relevant 

physical processes and can be used globally, but their 

computational efficiency is often low. Use of efficient 
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algorithms developed to calculate urban land surface 

biogeophysical parameters by combining a clear-sky 

model and the parameterizations for cloud transmittances 

are also necessary [53]. In the developed algorithms, the 

transmittances for water vapor, ozone, Rayleigh, aerosol, 

and cloud are each handled across the whole VIS, NIR and 

IR spectral bands. In addition, the contribution of the 

multiple reflections between land surface ground and the 

atmosphere are also expressly considered. Based on the 

advanced algorithms applied to estimate instantaneous 

radiative parameters with inputs from MODIS products on 

board both Terra and Aqua platforms, time series satellite 

data can be used to efficiently analyze climate and urban 

land cover impacts on thermal environment [54,55].  

Use of the advanced algorithms for time series 

satellite data analysis and statistical methods will make it 

possible to model the spatial dependencies between 

different land cover pixels, their temporal correlation, as 

well as the (possibly non-linear) relationships between 

multiple urban radiative and biogeophysical variables. The 

assumption of stationarity in these models means that the 

statistical model is valid for the entire target wavelength 

domain. This requirement is valid for all types of 

stochastic models, parametric as well as non-parametric. 

However, the variables that will be modeled are inherently 

non-stationary, meaning that their properties can have a 

spatiotemporal variability. Spatial non-stationarities are 

generated by satellite images, which may contain several 

types of landscapes or textural characteristics. Temporal 

non-stationarities include seasonal variability, described as 

a recurrence of patterns from year to year at a given 

location [56]. Another important source of temporal non-

stationarity is the trends produced by climate change or 

low-frequency climatic events. New satellite generations, 

such as the Copernicus Sentinel 2/3/4/5 overcome this gap 

with higher spatial resolution. 

 

2.3. Association of air pollution, atmospheric  

       variables, and COVID-19 

 

During the last decades, several epidemiologic studies 

conducted worldwide have shown that short- and long-

term exposure to ambient air pollution with particulate 

matter and gaseous pollutants is related to numerous viral 

diseases, and the increased incidence of cardiorespiratory 

diseases, including heart attacks and stroke deaths, 

observed at lag 0-1 day. Some scientific studies found a 

positive association between outdoor particulate matter 

PM air pollution due to road traffic and industrial sources 

and COVID-19 morbidity and severity. Laboratory 

experiments proved a long-time viability of SARS-CoV-2 

pathogens in both outdoor and indoor ambient aerosols or 

clusters of aerosols, as an important source of COVID-19 

viral infection transmission [[57]. However, some 

scientific studies reported observed airborne microbial 

components of bioaerosols (bacterial, fungal, viral, dust 

mites, pollen, and cellular fragments) originating from 

diverse natural and anthropogenic sources, and their 

spatiotemporal patterns in the atmospheric planetary 

boundary layer, especially in urban areas [58]. The 

seasonal variability of bioaerosols was associated with 

changes in land surface air conditions at landscape 

interactions, local and regional climate conditions, and/or 

changes in global air circulation [59]. 

Pathogenic bioaerosols like as SARS-CoV-2 found in 

both outdoor as well as indoor environments are the main 

sources of viral infections through inhalation, ingestion, 

and direct contact acting on the human immune system 

[60]. They can suffer long-range cross-border transport in 

the atmosphere and persist for long-term periods [61, 62].  

As some studies considered the projected increase of 

urban heat due to an increase in the duration, frequency, 

and severity of summer heatwaves and anthropogenic 

forcing, as well as the increase in the elderly population 

and rapid urbanization, people’s exposure to poor urban 

air quality in synergy with heat stress will be a challenge 

during pandemic events. As aerosols warm up the 

atmosphere [63, 64], they tend to stabilize the air PBL 

heights right above the city with a strong effect on 

the depletion of energy efficiency dissipation from the 

surface to the atmosphere [65]. The amount of absorption 

and reflection depends on the urban morphology, like city 

canyons [66]. As a direct consequence, the availability of 

radiation at the surface level determines increasing of the 

ground-level ozone concentration, which is produced by 

the photooxidation of VOCs (volatile organic compounds) 

in the presence of nitrogen oxides-NOx. In urban 

agglomerated areas O3 coexists with its higher 

concentration precursors in a complex photo-stationary 

equilibrium between photolysis and titration driven by 

sunlight and OH radicals [21]. Two air pollutants are 

particularly relevant during heat episodes: ozone and 

particulate matter PM in two size fractions PM2.5 and 

PM10 [67]. Outdoor areas record the highest 

concentrations of ground-level O3, while indoor PM2.5 

and PM10 can also penetrate. One possibility is that the 

effects of heat and air pollution are essentially equivalent 

to the effect of the two different exposures occurring 

separately (an additive effect). Also, air maximum 

temperature at 2 m height- Tmax and concentrations of 

nitrogen dioxide -NO2 are additional significant risk 

factors for heat stroke in urban areas [68]. Simultaneous 

exposure to air pollution and heat stress in urban 

agglomerated areas is an amplified harmful health effect. 

At the urban level, on days with high ground-level 

concentrations of air pollutants O3, NO2, PM2.5, and 

PM10, and UHI phenomena, under severe heat waves, 

significant negative effects on viral pandemic and non-

pandemic cardiovascular diseases, especially among the 

elderly population, have been reported [28,44]. Viral 

human infections have been directly correlated to climate 

parameters like as ambient air relative humidity, air 

temperature, atmospheric pressure, wind speed intensity 

and direction, and precipitation rate [69]. Also, the 

association of respiratory viral infection with ambient air 

pollution and lower levels of planetary boundary layer 

height can have a major impact [70,71]. Currently, several 

studies consider that environmental factors and ground-

level air pollution may play an essential role in the 
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diffusion and progression of the COVID-19 viral disease 

[72-76].  

As a main optical property that quantifies the 

concentration of aerosols present in the atmosphere and a 

direct measure of aerosol loading, total aerosol optical 

depth (AOD) at 550 nm estimates the quantity of a beam’s 

energy that is dispersed or absorbed in an atmospheric 

column over a studied area. It is the crucial variable in 

estimating the Earth’s energy budget spatiotemporal 

variability. Changes in climate variables patterns could 

result in major changes in AOD, having direct and indirect 

impacts on aerosol radiative forcing. Due to variations in 

atmospheric dynamics and meteorology strong changes in 

AOD and tropospheric NO2 have been recorded during 

and after COVID-19 [77,78]. The lowest part of the 

troposphere, the planetary boundary layer PBL is an 

interface for the exchange of energy and particulates 

between the land surface and the atmosphere, its 

development is strongly influenced by the complex 

vertical mixing process of aerosols, gases, and water 

vapor. A study in China observed that abnormally shallow 

PBL heights triggering strong aerosol-PBL interactions 

were associated with increased rates of COVID-19 

incidence and lethality [79]. Several scientific papers 

found different results, but the widespread viral infection 

cases in warmer climate countries such as Iran, India, and 

Brazil have contradicted the existence of an inverse 

correlation of air temperature with COVID-19 cases [80]. 

In urban and industrialized regions, clusters of aerosols 

(particulate matter PM and pollutant gases) can attach 

viruses as well as bacteria and fungi, which can reach the 

upper and lower cardiorespiratory tract [81]. Function of 

climate conditions, both indoors and outdoors, 

contaminated air with viral pathogens will be transmitted 

[82].  

 

2.4. Study test site  

 

Tokyo megacity (Fig. 1), with 13,556 km2 surface, 

and a population of more than 38 million, is located in the 

Southern coastal part of Honshu Island, and the Northern 

area of Tokyo Bay in Tokyo prefecture, at 35o41’23’’ N 

Latitude, and 139◦41’32′′ E Longitude. Tokyo City, the 

capital of Japan, with an area of 2,194 km2 and a 40 m 

elevation, has more than 14 million people. The population 

density of Tokyo is around 6,225 people per km2. The 

climate is humid subtropical, affected by the monsoon 

circulation, having hot, humid, and rainy summers, mild to 

cool winters, and occasional cold spells. The summer 

month August is the warmest with a 26.4 °C mean air 

temperature, while January is the coolest month, with a 5.2 

°C mean air temperature [83]. The annual mean 

precipitation rate is about 1,530 mm; its levels being 

influenced by the mid-latitude storms and tropical 

cyclones. Figure 1 presents the locations of the urban/rural 

test sites used for UHI evaluation: Tokyo urban is a 

selected area of (6.5 km × 6.5 km) surface centered on 

35.6764 oN latitude and 139.6500 oE longitude, and Tokyo 

rural is a selected area of (6.5 km × 6.5) km surface 

centered on 35.60 oN latitude and 139.25 oE longitude. 

 

TOKYO URBAN
TOKYO RURAL

TOKYO URBAN
TOKYO RURAL

 
(a) 
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TOKYO URBAN
TOKYO RURAL

 
(b) 

 

Fig. 1. Study test site Tokyo metropolitan area on a MODIS Terra classification map with the selected urban sector (a) and a 

representative rural vegetated area (b) used for UHI evaluation (colour online) 

 

2.5. Data sets 

 

To analyze the synergy impact of UHIs and HWs on 

COVID-19 viral infection incidence and lethality during 

the summer period 2020-2022, considering air pollutants 

and climate parameters variability in the Tokyo 

metropolitan area, this study used available observational, 

satellite remote sensing and reanalysis data provided by 

various sources. The main climate variables and air 

pollutants time series data sets were supplied by different 

monitoring networks and satellite platforms. 

(1) COVID-19 data. Daily New COVID-19 cases 

(DNC) and Daily New COVID-19 death (DND) have been 

provided by COVID-19 available webpages for COVID-

19 evidence in Tokyo [84, 85].  

(2) MODIS LST data. Among the available LST 

products developed through the different retrieval 

algorithms based on TIR sensors from different satellite 

missions (TM/ETM+/OLI, AVHRR, SENTINEL, AMSR-

E, AATSR, VIRR), MODIS is considered the most 

suitable data source for LST monitoring due to its high 

observation frequency, moderate spatial resolution, and 

free availability. This study used NASA MODIS /VIIRS 

Land Products Global Subsetting Tool at the ORNL 

DAAC, MOD11A2 LST_Day_1 km and MOD11A2 

LST_Night_1 km collected within 8 days [86,87] provide 

time series LST data for the Tokyo metropolitan area. 

Several studies found that the root mean square error 

(RMSE) of the MODIS LST data is within 2.0 °C and 

exhibits high accuracy in the major global cities [88]. 

(3) MODIS AOD data. NASA (National Aeronautics 

and Space Administration)- Giovanni portal (Geospatial 

Interactive Online Visualization and Analysis 

Infrastructure) supplied the daily mean and monthly mean 

of total Aerosol Optical Depth at 550 nm data (MODIS 

Terra -AOD) [89].  

(4) Air quality data. AQICN (World Air Quality 

Index) [90] and local monitoring networks supplied the 

daily mean time series data for air pollutant 

concentrations.  

(5) Potential climate driving factors. This study used 

the daily mean time series of climate data (air temperature 

-T at 2 m height, air maximum air temperature at 2 m 

height, air relative humidity -RH, air pressure -p, wind 

speed intensity-w and direction, planetary boundary layer 

height -PBL) provided by MERRA-2 Version 2 (Modern-

Era Retrospective Analysis for Research and Applications) 

[91], and C3S (Copernicus Climate Change Service) [92]. 

 

2.6. Used methodology 

 

The UHIs phenomena are quantified using multiple 

indices based on either land surface temperature (LST) or 

air temperature. There is an imperative need for UHIs' 

quantification for its optimization to mitigate the 

increasing possible health and economic hazards. For UHI 

analysis, this study uses a land surface-based UHI index 

[9,10,93], described by equation (1): 

 

                        ΔLST = LSTurban   -  LSTrural                                 (1)  
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where ΔLST is the difference in land surface temperature 

of a central urbanized sector of Tokyo (LSTurban) and that 

of a representative rural area (LSTrural), located in a 

vegetated area of the metropolitan region (Fig. 1).  

As the most important predictor of heat-related 

fatalities [48], this study used daily maximum 

temperatures, having the advantage of accounting for local 

differences in Tokyo urban climatology [5].  

Current research used a robust methodology to 

investigate the complex interplay of COVID-19 and urban 

heat comprehensively, incorporating time series data 

analysis, an approach less commonly employed in 

epidemiological contexts. Cross-correlation analysis was 

employed to assess the similarity between two time series 

data of the outdoor daily mean air pollutants (PM2.5, 

PM10, O3, NO2) concentrations, the daily mean AOD 

levels, climate parameters (TA, Tmax, RH, w, GHI, PBL), 

and COVID-19 incidence and lethality in Tokyo. Standard 

statistical tools, Spearman rank-correlation, rank-

correlation non-parametric test coefficients, and linear 

regression analysis have been used for the dependence 

between pairs of the daily mean time series data. The 

primary independent variable was the maximum daily air 

temperature at 2 m height.  Also, 8 Days of MOD11A2 

LST land surface temperature LST Day/Night was used 

for heat waves assessment to urban heat island 

phenomena. Kolmogorov-Smirnov Tests of Normality 

have been used to assess the normality of the daily mean 

time-series data sets because DNC COVID-19 incidence 

cases and DND COVID-19 cases have a non-normal 

distribution. Spearman rank correlation as a nonparametric 

measure was chosen to identify the dependence between 

the rankings of the important pairs of variables. To 

determine the statistical significance of the correlation, we 

used the p-value (p < 0.05). ORIGIN 10.0 software version 

2021 for Microsoft Windows, and ENVI 5.7 were used for 

data processing. All-time series data sets were 

preprocessed using the TIMESAT 3.2 software. Various 

preprocessing levels are tested, including smoothing and 

phenometrics computation. 

 

 
3. Results 
 

3.1. Air pollution and climate parameters impacts  

       on COVID-19 during summer periods  

       2020-2022 in Tokyo 

        

During 1 March 2020 and 1 February 2023, the Tokyo 

metropolis in Japan passed through eight waves of 

COVID-19 viral infection with the highest incidence and 

mortality rates under the 7th COVID-19 wave of the 2022 

summer as Fig. 2 shows. It is well recognized that urban 

heat waves are of great concern, especially during summer 

in large cities, because of physiological, psychological, 

and health impacts and vulnerability to heat stress. For hot 

summers, various pre-pandemic studies reported strong 

correlations between at-the-ground high levels of PM2.5 

and O3 concentrations and heat stress mortality due to 

cardiorespiratory diseases and existing comorbidities. In 

urban agglomerated regions, clusters of aerosols 

(particulate matter and pollutant gases) can attach 

bioaerosols like viruses, bacteria, and fungi originating 

from anthropogenic or natural sources that can reach the 

upper and lower airways, and the lung parenchyma [82]. 

Also, long-term human exposure to heat waves may 

increase the harmful effects of air pollutants, among which 

the increased ground level O3 concentrations are formed 

due to high solar irradiance and high temperature. The 

basic idea of this analysis was to compare the cumulative 

numbers of the daily new COVID-19 cases and daily new 

COVID-19 deaths during 2020-2022 per a three-month 

window (July-September) period and the corresponding 

average of daily mean of air pollutants (PM2.5, PM10, O3, 

and NO2) concentrations, total Aerosol Optical Depth at 

550 nm and planetary boundary layer heights (Table 1), as 

well as together climate parameters variability (air 

temperature at 2 m height, maximum air temperature Tmax, 

air pressure, wind speed intensity, surface solar 

irradiance), (Table 2). 

In 2022, Japan experienced the hottest summer on 

record, with highly extreme temperatures and several 

consecutive heat wave events for several days and 

widespread areas [2,94]. Despite similar restrictions during 

the summers of 2020 and 2021, persistent heat waves 

recorded in the summer of 2022 in Tokyo linked to 

atmospheric dynamic changes and synergy of HWs with 

UHIs had severe impacts on COVID-19 viral infection 

transmission including excess incidence and lethality of 

COVID-19 cases in comparison with the previous 

pandemic years (Table 1). As Fig. 3 shows, in the summer 

of 2022, there were slight increases in the monthly ground-

level concentrations of air particulate matter PM2.5.   

Additionally, the moderately increased ground-level 

ozone concentrations during the summer of 2022 could 

pose a high risk for human health and intensify the 

greenhouse effect, with a direct impact on the intensity of 

the 7th COVID-19 wave. This finding confirms the results 

of another study [93], which reported for the summer of 

2022 moderate air pollution (PM2.5, PM10, O3, and NO2) 

sources in about a 100 km radius of the Tokyo 

metropolitan area. However, under hot summers the 

mortality of people with comorbidities is increased under 

air pollution [95]. As Table 1 presents, due to several 

imposed restrictions for city traffic and local industries, 

the total AOD at 550 nm, which quantifies the 

concentration of aerosols present in the atmosphere, shows 

a slight decrease during summer 2022 in comparison with 

the previous pandemic years 2020 and 2021.
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Fig. 2. Temporal pattern of COVID-19 multi waves daily new cases (DNC) and daily new deaths (DND) evolution during January 2020 

and February 2023 (colour online) 

 

Table 1. Comparative analysis of the DNC and DND COVID-19 cases for (July-September) summer periods, and the average daily 

mean concentrations ± standard deviations of the main air pollutants at the ground level, PBL heights, and AOD during 2020 –2022 in 

Tokyo metropolis. 

 

 

Time period 

DNC 

cases 

 DND 

cases 

Average Daily 

mean ± SD 

PM2.5 (µg/m3) 

 

Average Daily 

mean ± SD 

PM10 (µg/m3) 

 

Average Daily  

mean ± SD 

O3 (µg/m3) 

 

Average 

Daily  

mean ± SD 

NO2 (µg/m3) 

Average Daily  

mean ± SD 

AOD 

Average Daily  

mean ± SD 

PBL height (m) 

July-

September             

2020 

19,756 77 15.19±7.12 48.32±20.37 28.19±16.23 8.75±3.47 0.35±0.15 651.63±104.29 

July-

September             

2021 

205,794 378 13.21±7.45 47.83±18.27 29.18±12.63 8.69±4.23 0.33±0.13 651.12±49.54 

July-

September             

2022 

1,584,931 1,722 16.89±7.73 42.81±14.21 32.12±15.27 8.53±8.26 0.31±0.11 628.31±27.12 

     
Table 2. Comparative analysis of the average daily mean climate parameters per (July-September) periods, during 2020 –2022 in Tokyo 

metropolitan city. 

 

 

Period 

Average 

daily mean 

± SD 

T (°C) 

Average daily 

mean ± SD 

Tmax (°C) 

Average daily   

mean ± SD 

RH (%) 

Average  

daily mean ± SD 

P (hPa) 

 

Average daily  

mean ± SD 

w (m/s) 

Average  

daily  

mean ± SD 

GHI (W/m2) 

Average 

daily 

mean ± SD 

RR (mm) 

July-September             

2020 

25.24±2.85 

In the range 

17.25 – 

30.32 

 

29.5 ±3.92 

In the range 

21.11 -37.2 

82.31±4.03 

In the range 

74.13 – 90.47 

997.48 ± 3.02 

In the range 

986.1 ±1002.83 

3.29±2.08 

In the range 

0.29-9.43 

292.55 ± 30.89 

In the range 

236.08-339.05 

6.63±8.56 

In the range  

0.05-44.9 

July-September             

2021 

24.52±2.63 

In the range 

18.47-28.51 

28.54±3.94 

In the range 

21.11-35 

82.30±4.86 

In the range 

70.72-91.52 

998.20±4.97 

In the range 

985.85-1010.17 

2.75±1.6 

In the range 

0.46-11.54 

291.8±32.87 

In the range 

220.59-338.58 

10.05±14.82 

In the range 

0.02-70.0 

July-September             

2022 

25.96±2.43 

In the range 

18.67-31.46 

30.97±2.29 

In the range 

25,1- 36.25 

80.97±4.37 

In the range 

71.71-91.1 

993.76±3.12 

In the range 

984.66-1005.12 

3.37±1.69 

In the range 

3.09-9.39 

 

295.67±32.26 

In the range 

228.17-343.51 

6.95±11.35 

In the range 

0.01-61.74 
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Fig. 3. Temporal pattern of the monthly air pollutant concentrations and planetary boundary layer heights in Tokyo during January 

2020 - December 2022 (colour online) 

 
Considering PM2.5 as a main potential airborne 

transmitter of COVID-19 pathogens via modulating the 

expression of angiotensin-converting enzyme ACE2 in 

lung injury [96], the high average of daily mean PM2.5 

concentrations in value of (16.89 ± 7.73) µg/m3 and the 

high value of PM2.5/PM10 ratio (0.39) showing the 

predominance of PM2.5 traffic-related air pollutants 

relative to PM10 emissions due to industries under the 

summer of 7th COVID-19 wave period, together with 

lower levels of PBL heights, may explain the high rates of 

total DNC cases (1,584,931), and total DND deaths 

(1,722) in Tokyo. Besides inhalation of indoor and outdoor 

virus-laden particles, high levels of average daily mean 

ground-level O3 (32.12 ± 15.27) µg/m3 attributed to the 

increased air temperatures and strong ultraviolet radiation 

recorded in Tokyo during the same period modified 

different immune defense responses against viral and 

bacterial infections. Like air pollution, outdoor-specific 

local meteorological factors can be top predictors of 

airborne viral infection spreading.  

Under similar climate average values of daily mean 

global horizontal solar irradiance, high daily mean air 

temperature at 2 m height, low air pressure, low wind 

speed intensity, low rate of precipitations, low levels of 

planetary  boundary layer heights recorded during the 

summers of 2020 to 2022, significant differences were 

registered for the increased values of daily maximum air 

temperature (30.97 ± 2.29) °C, and the decreased values of 

air relative humidity (80.97 ± 4.37) % during the hot 

summer of 2022 in Tokyo. The moderately increased 

values of the ground-level average daily mean particulate 

matter PM2.5 and ozone O3, and maximum air 

temperature, together lack an Emergency State, can be 

additional factors contributing to the increased rates of 

COVID-19 incidence and mortality recorded during 

the summer of 2022.  

Furthermore, the density of the elderly population is 

highly concentrated in the Tokyo prefecture, where in 

September 2022, people over 65 years old counted 3.12 

million, which is still growing [95].  

Three months-long time PBL very low heights with a 

mean of (628.31 ± 27.12) m, as is reflected in Fig. 4, had a 

great contribution to the accumulation of viral pathogens 

together with aerosols in the near-ground atmosphere. 

Considering people’s vulnerability to the co-occurrence of 

viral infections and extreme heat, it is an urgent task to 

reduce heat-related risk in Tokyo. 
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Fig. 4. Time Averaged Map of monthly planetary boundary layer PBL height (m), based on MODIS Terra data and MERRA-2 Model 

M2TMNXFLX v.5.12.4, over July-September 2022 in Tokyo (colour online) 

 

 

3.2. Spatiotemporal patterns of LST and UHI 
 

From MODIS11A2 Terra LST_Day_1 km and 

MODIS11A2 Terra LST_Night_1 km collected within 8-

day period of satellite time series data analysis during 

2020- 2022 COVID-19 period, the current research found 

for the July-September 2022 time window the highest 

values of land surface temperatures (LST) recorded during 

the day with an 8 days LST mean of (40.39 ± 2.67) °C , in 

the range of (35.79 - 44.23) °C. Fig. 5 comparatively 

illustrates temporal patterns of MODIS LST_Day and 

LST_Night in the central Tokyo metropolitan area during 

January 2020 - December 2022. Besides the seasonal and 

annual differences of LST, this figure shows a significant 

difference between diurnal and nocturnal values of LST, 

especially for the 2022 year. We identified LST_Day 

anomalies related to HWs of summer 2022. 
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Fig. 5. Temporal patterns of MODIS LST_Day and LST_Night in the central Tokyo metropolitan area during January 2020 - December 

2022 (colour online) 

 

To curb the rate of COVID-19 infectivity, during 

2020–2022-time windows in Tokyo have been 

implemented five states of emergencies, periods which are 

very well reflected by sharp sudden drops of LST_Night, 

and lower reductions in LST_Day in Fig. 5. Also, the 

imposed lockdown and partial lockdowns through states of 

emergencies, resulted in UHIs reduction levels (Fig. 6). 

Comparative analysis of summers 2020, 2021, and 2022 in 

Fig. 6 reveals the maximum UHI_Day value recorded 

during summer 2022, in comparison with the previous two 

summers, more intense than nocturnal UHI. Association 

with existing HWs, can explain the high increase in daily 

new incidence (DNC) and deaths (DND) of COVID-19 

cases. 
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Fig. 6. Temporal patterns of MODIS UHI_Day (in red) and UHI_Night (in black) in Tokyo metropolitan area during January 2020 - 

December 2022 (colour online) 

 

As Table 3 shows, there is a strong correlation 

between daily maximum air temperature Tmax and daily 

mean global horizontal surface solar irradiance -GHI (r = 

0.82; p ≤ 0.05), as well as between MODIS LST_ Day 

max and GHI (r = 0.91; p ≤ 0.05), which may illustrate the 

important role of surface solar irradiance involved in heat 

stress in Tokyo metropolis. Direct exposure of a person to 

solar radiation contributes significantly to much more heat 

than someone staying in the shade. Fig. 7 presenting the 

temporal evolution of the daily Tmax and 8 days LST max 

MODIS in the Tokyo metropolitan area during the 

investigated period January 2020 - December 2022 shows 

a clear rise of MODIS 8 days LSTmax during summer 

2022. Time series MODIS11A2 Terra LST_Night_1 km 

satellite data for July-September 2022 show 8 days LST 

mean of (25.97 ± 2.37) °C value, in the range of (21.79 - 

29.54) °C, corresponding to the 7th COVID -19 wave 

recorded in Tokyo metropolitan area. Also, this study 

reports the highest value of the maximum LST_Day_1 km 

of 42 °C ever recorded from the 2002 year in Tokyo. 

There is a strong positive correlation between UHI_Day 

_Tokyo and LST_Day (r = 0.79; p ≤ 0.05), and a lower 

positive correlation between UHI_Night _Tokyo and 

LST_Night (r = 0.31; p ≤ 0.05), during the entire 

investigated period 2020-2022. During 1 January 2020 and 

27 December 2022, MODIS UHI_Day recorded a mean 

value   of (6.09 ± 2.69) °C, in the range (5.68 - 21.88) °C, 

while MODIS UHI_Night had a mean value of (2.94 ± 

1.51) °C, in the range (-5.34 - 9.66) °C. 
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Fig. 7. Temporal patterns of daily Tmax and 8 days LST max MODIS in Tokyo metropolitan area during January 2020 - December 2022 

(colour online) 

 

Because, land surface temperature (LST) is a key 

parameter related to surface-atmosphere interactions, it 

provides useful information for urban thermal environment 

patterns in Tokyo, and their trends of urban heat across 

city scales. Like this study, LST has been widely used for 

different scientific studies, such as climatology, public 

health, and environmental sciences [96-98]. However, 

LST alone cannot comprehensively capture human heat 

stress on the ground, which is influenced by local climate 

and anthropogenic factors. Urban thermal environment 
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parameters described in this research (T mean, Tmax, 

LST_Day max) are close related to air pollutants 

concentrations, and climate parameters, such as global 

horizontal solar surface irradiance (GHI), air relative 

humidity (RH), air pressure, PBL height, wind speed 

intensity (w) and direction, and many other factors. For 

July 2022- September 2022 period characterized by high 

thermal anomaly, the findings in Table 3 present high 

positive Spearman statistical correlations between air Tmax 

and COVID-19 incidence and lethality cases, expressed by 

DNC (r = 0.81; p ≤ 0.05) and respectively DND (r = 0.38; 

p ≤ 0.05). Like other study reported [99], the findings of 

this study consider that a rise in the air temperature, 

particularly during summer HWs events in the Tokyo 

metropolitan area, can increase the stability of viral 

infection, pathogen viability, and transmission of COVID-

19. 

 
Table 3. Spearman correlation coefficients and p values, between daily air mean temperature T, maximum Tmax, and 8-day LST-Day 

max with the daily mean air pollutants and meteorological parameters, and with DNC and DND COVID-19 cases, for Tokyo metropolis 

during the 7th COVID-19 wave (July 2022-- September 2022) 

 

                                  

Tokyo 

metropolis 

 

 

PM2.5 

(µg/m3) 

 

PM10 

(µg/m3) 

 

AOD 

 

O3 

(µg/m3) 

 

NO2 

(µg/m3) 

 

PBL 

(m) 

 

RR 

(mm) 

 

RH 

(%) 

 

w 

(m/s) 

 

P 

(hPa) 

 

GHI 

(W/m2) 

 

DNC 

 

DND 

T(mean) 

 

0.73* 0.52* 0.65* 0.30* -0.74* -0.83* 0.73* 0.81* -0.19* -0.69* 0.77* 0.21* 0.23* 

Tmax 

 

0.49* 0.37* 0.54* 0.26* -0.39* -0.89* 0.94* 0.49* -0.27* -0.47* 0.82* 0.81* 0.38* 

MODIS 

LST_Day max 

 

0.62* 

 

0.43* 

 

0.66* 

 

0.47* 

 

-0.49* 

 

-0.52* 

 

0.95* 

 

0.55* 

 

-0.29* 

 

-0.49* 

 

0.91* 

 

0.39* 

 

0.18** 

                  Note: * indicate p ≤ 0.05, ** indicate p ≥ 0.05.  

 
3.3. Urban heat stress, climate variability and  

       COVID-19 in Tokyo 

 

Function of local climate zones, due to the cumulative 

effects of rapid urbanization and climate warming, during 

the summer period of 2022, the Tokyo metropolitan region 

was faced with the co-occurrence of strong HWs, UHIs, 

and COVID-19 viral infection. This synergistic exposure 

to urban heat of Tokyo inhabitants enhanced heat stress in 

the central Tokyo and its surrounding areas, and 

exacerbated the COVID-19 disease incidence and 

mortality [100]. However, the co-occurrence of HWs and 

UHIs' effects on human health shows different degrees of 

synergistic interactions with climate and air pollution 

variability, depending on several factors among which, the 

geographical locations of the city, the time of day, the 

population density, and its mobility patterns. 

Under the COVID-19 pandemic period and in 

particular during severe hot days of summer 2022, the 

synergy of UHIs and HWs was responsible for the 

recorded high peaks of DNC and DND cases in the Tokyo 

metropolitan region, when the number of DND cases 

increased by 7.7 times than in the summer of 2021, and 

80.2 times than in the summer of 2020.  

To explain the highest rates of COVID-19 DNC and 

DND cases recorded during the 7th wave period (July-

September 2022), considering the additional health risk 

due to heat stress disorders, the results of this study 

confirm the findings of similar studies, according to an 

increase in the urban air temperature allows an increase in 

viral infection transmission [101,102]. Under HWs, the 

synoptic analysis conducted in this study during the 

summer of 2022 in the Tokyo metropolis shows that the 

low-pressure cyclonic conditions were responsible for the 

hot advection of the lower layer of the troposphere and air 

pollutants accumulation near the ground. Moreover, at 

Tokyo metropolitan-scale, heat and air pollutants under 

low dispersion across different urban/periurban shapes and 

winds are crucial health risks during COVID-19 viral 

disease, results which are consistent with previous studies 

[103,104]. Scientific literature recognized the UHIs and 

urban hot temperatures adverse impacts on human thermal 

comfort, energy consumption, air pollution, and global 

warming [105]. As a result of climate warming and rapid 

urbanization, urban heat attributed to the synergy of heat 

waves and heat islands is a critical intervention during 

epidemic viral diseases.  

Previous studies revealed that under non-pandemic 

periods due to Tokyo geomorphology, during summer hot 

days (Tmax > 35 °C) horizontal heat advection is a key 

factor for the observed near-surface enhanced warming 

and physical heating due to the increased insolation and 

adiabatic heating, being associated with serious heat-

related illnesses [106,107]. Also, recent global heat waves 

highlighted the cause-effect linkage of the morbidity and 

mortality rates related to the urban heat environment. 

Current studies employed for non-pandemic periods 

demonstrated that heat-related illness and mortality in 

large cities may be linked to prolonged exposure to 

extremely hot temperatures, with high effects on the 

body's ability to regulate its temperature, resulting in heat 

sickness, heat stroke, and an increase in respiratory and 

cardiovascular emergencies [108,109]. While human heat 

sensitivity depends on individual health-related factors, 

heat exposure is a function of the thermal environment and 

its meteorological conditions (air humidity, wind speed 

intensity, and direction, solar radiation, and its reflection, 

absorption, and re-emission by the atmosphere and earth's 

surface land covers). According to several studies, to limit 

the negative effects of summer hot temperatures on health 
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during the pandemic and non-pandemic periods is 

imperative to implement heat health warning systems at 

both regional-specific thresholds as well as at the country 

levels, heat waves are changing viral disease dynamics in 

unpredictable ways [110-115].  

Besides high air temperature during the summer 

season, other local and regional climate factors (air 

relative humidity, pressure, wind speed intensity, and 

direction, Planetary Boundary Layer heights, PBL, surface 

global horizontal solar irradiance, GHI), and their 

interannual and seasonal variability can amplify the 

incidence and lethality of COVID-19 cases in the urban 

environment. In comparison with summers 2020 and 2021, 

summer 2022 in Tokyo was characterized by higher levels 

of particulate matter, very low levels of PBL heights 

(Figure 3), and atmospheric stagnant conditions associated 

with lower mean values of air relative humidity, air 

pressure, wind speed intensity, and rainfall (Fig. 8).  

These peculiar climate and air pollution conditions 

and their seasonality may also explain the recorded high 

rates of COVID-19 incidence and mortality cases, being 

known that the urban lower atmospheric system can be a 

significant transport vector for airborne microbiome (viral, 

bacterial, fungal) communities attached to particulate 

matter in both concentration and biodiversity [116-118]. 

Also, similar to other papers' results [119], this study 

found a positive Spearman rank correlation association (r 

= 0.38; p ≤ 0.05) between the DNC COVID-19 cases and 

surface global horizontal solar irradiance (GHI). This 

finding was unexpected because UV solar radiation is 

considered to be a virus inactivation factor [120-122], as 

solar radiation increases vitamin D and the immune 

system. However, as can be seen from Fig. 8, COVID-19 

and climate-driving factors have mutual seasonality 

patterns in Tokyo. Also, the relative lower levels values of 

meteorological parameters wind speed intensity, relative 

air humidity, air pressure and rainfall, recorded during 

summer 2022, in comparison with summers 2020 and 

2021, may contribute at COVID-19 viral infection 

transmission, and the increasing rates of incidence and 

lethality. Like other studies [123], our study found that air 

pollution and climate parameters may have more impact 

on COVID-19 incidence during the pandemic in Tokyo, 

through triggering COVID-19 viral infection transmission, 

while synoptic atmospheric circulation patterns are related 

to COVID-19 wave start-up. 
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Fig. 8. Temporal patterns of the monthly climate parameters and Daily New COVID-19 cases (DNC) in Tokyo from January 2020 - 

December 2022 (colour online) 
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4. Discussion 
 

According to the new World Health Organization Air 

Quality Guidelines [124], to better enhance health and 

promote sustainable development in large urban areas, 

during pandemic events overlapped with increased urban 

heat and air pollution concentrations, there is an urgent 

need to implement proper mitigation measures.  It is 

considered that potential urban heat island (UHI) 

mitigation has a net beneficial effect on urban 

environmental quality and sustainability.  

The dual impact of the urban extreme heat attributed 

to the increased heat stress due to the co-occurrence of 

UHIs, HWs associated with air pollution under 

the pandemic infection of COVID-19, decreased human 

immunity system, and further enhanced viral disease 

spreading and increasing lethality. However, function of 

the specific topography location of urban areas the 

transport of air pollutants emitted from the surface sources 

is strongly dependent on interactions between local and 

regional-scale atmospheric circulation. The exposure to air 

pollutants significantly increases with an increase in city 

size [125], and several air pollution episodes are 

responsible for strong impacts on the severity of airborne 

viral disease evolution and mortality [126]. Due to the 

significantly higher concentration of pollutants in the 

urban areas compared to the rural areas, aerosols (from 

industrial activities, vehicular traffic, and domestic 

practices) and ground-level ozone directly impact 

the UHI phenomenon [127]. Climate variables, including 

solar radiation, cloud cover, wind speed, and precipitation, 

also contribute to the formation, magnitude, and extent of 

UHIs. Despite the differences between air temperature at 2 

m height and land surface temperature derived from 

satellite remote sensing data, strong correlations between 

them contribute to a more comprehensive global 

characterization of UHI effects [128]. Like other studies, 

this research found a relatively high increase in summer 

daily mean air temperature trend in the Tokyo 

metropolitan area during the 2020-2022 period, which may 

be related to long-term climate changes associated with the 

thermal and mechanical effects of urbanization, and a 

declining trend of vegetation. Rapid urbanization 

contributed to the conversion of urban vegetation cover to 

impervious areas. Tree land cover areas in Tokyo recorded 

a decline of 7.3 % in 2022, associated with the decreased 

biofilter role of green vegetation for atmospheric dust 

particles [129]. Some studies found the increased values of 

the annual mean of land surface temperature of 3 

°C/century between 1901- 2015 in Tokyo [130]. Urban 

expansion in Tokyo during recent years led to significant 

increases in impervious surface land cover, contributing to 

pronounced LST rise and UHIs intensifying with severe 

health effects during COVID-19. However, vegetation 

land cover provides more efficient cooling than water 

bodies in mitigating LST during HWs across different bay 

areas. However, Tokyo's annual mean air temperature has 

an increasing trend, which shows the progress of global 

warming. For non-pandemic periods in Tokyo, and 2 °C 

global climate warming scenarios were estimated to have 

an increase in the daily heat illness in the 2040s, twice that 

in the 2010s [131]. Considering this forecasting, during a 

future viral epidemic event, the daily incidence and 

lethality of viral diseases will be enhanced. Besides urban 

heat stress and other meteorological factors, COVID-19 

hotspot analysis of population movements and social 

events in Japan contributed to the spreading of SARS-

CoV-2 viral infections [132,133].  

The intensification of the globalization process 

associated with urban land cover expansion, together with 

the increasing trend of sustainable development, is 

responsible for several changes in highly urbanized areas 

with a high impact on the urban thermal environment. 

Because urban extreme summer heat is an increasingly 

prevalent hazard worldwide as well as in Tokyo 

metropolises, urban planners must consider heat 

vulnerability reduction by adopting policies related to 

preserving and creating green-blue spaces and 

environmental sustainability performance [134,135]. To 

mitigate the UHI effects on summer hot thermal 

environment and reduce energy consumption, some 

studies demonstrated the need to integrate green spaces 

between high-rise buildings in big cities [136-141]. Urban 

green mitigates urban heat by altering evapo-transpiration 

processes and providing cooling effects to the surrounding 

environment [142,143]. Based on monthly derived land 

surface temperature from MODIS Terra imagery was 

reported that through implementing heat stress mitigation 

measures, summer heat-related illnesses decreased during 

(June–September) month from 2000 to 2022 by 3.2 in 

seven large cities in California, US [144]. Some recent 

urban heat stress studies [145-147] employed various 

novel approaches, using heat thresholds based on higher 

spatial resolution, including Landsat-9 [148] and Sentinel 

3 [149] satellite remote sensing data. The response of 

UHIs during HW events varies with different conditions 

(HW intensity, frequency, and maximum duration, day-

and-night contrast, and microclimate zones). To protect 

people’s health and well-being, there is an urgent need for 

the development and implementation of urban information 

environmental integrated systems and forecasting models 

for air pollutants dispersion during stagnant weather 

conditions for the assessment of the thermal stress impact 

on health, particularly for hot summers worldwide [150-

153]. 

In good accordance with other studies [154,155], this 

study considers that ongoing global warming could hinder 

people’s use of urban green spaces during summer hot 

periods during pandemic events. The novelty of this paper 

is to connect the COVID-19 pandemic and the summer 

2022 high temperature in the Tokyo metropolitan region 

more comprehensively, providing urban decision-makers 

and planners with references for heat mitigation, 

prevention, and adaptation strategies of sustainable 

development.  

A recent study [156] found that in non-pandemic 

summers, assuming current vulnerability and 

socioeconomic structures remain unchanged, heat-related 

https://www.sciencedirect.com/topics/engineering/urban-heat-island-effect
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-impact-assessment
https://www.sciencedirect.com/topics/engineering/land-surface
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/air-pollutant
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/urban-heat-island-effect
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mortality levels in Tokyo can reach COVID-19 mortality 

in less than ten years at a + 3.0 °C increase in global 

warming relative to preindustrial era. Rapid climate action 

is needed to curb these projected levels. Under global 

climate warming, the transmission and spread of vector-

borne diseases (VBDs) like as COVID-19 will be a major 

threat to human health in the future [157], and heat waves 

will accelerate the spread of infectious diseases [158]. 

 

 
5. Conclusion 
 

Based on a comprehensive analysis of air pollution 

and climate variability trends, this research focused on the 

hotspots of COVID-19 infections in the Tokyo 

metropolitan area during the summers of 2020, 2021, and 

2022. This study revealed the relationship between UHI 

and HW associated with air pollution under low-pressure 

cyclonic conditions and lower levels of PBL heights 

during the COVID-19 pandemic event in the Tokyo 

metropolitan area and highlighted the summer 2022 

extreme HWs effects on increased incidence and lethality 

rates of COVID-19 viral infection disease. Also, the 

findings of this study suggest that remote sensing MODIS 

satellite data can be effectively used to analyze the thermal 

environment impact on viral infection trends in densely 

populated urban areas. The results highlight the direct 

effects of air pollution and local meteorological synoptical 

conditions in the spreading and exacerbating health risks 

of pandemic viral infections in large metropolitan areas, 

particularly in Tokyo. Additionally, this study considers 

the significant contribution of urban heat stress attributed 

to persistent summer heat waves associated with urban 

heat island phenomena on COVID-19 incidence and 

lethality, which requires interventional measures of urban 

decision-makers to enhance air quality and efficient 

control of epidemic disease, especially in highly exposed 

population groups with comorbidities. 

To develop a sustainable approach to minimize the 

UHI and HWs effects on viral infection transmission 

during summer hot periods and improve urban resilience, 

decision-makers must implement efficient prevention and 

mitigation actions. In the frame of global warming is 

essential to adopt proper strategies for the reduction of air 

pollution under HWs periods, for optimizing the design of 

urban thermal environments that limit the negative impacts 

of climate extremes on people’s health. The results of this 

paper can help epidemiologists understand the behaviour 

of viral infection against environmental variables, helping 

healthcare policymakers combat the COVID-19 pandemic 

and control future epidemic threats in agglomerated cities. 

This study may offer a scientific basis to formulate area-

specific heat adaptation strategies for urban planning, 

clean production, and human health. It is crucial to 

anticipate the most serious threats of climate warming over 

the coming decades and to support mitigation and 

adaptation efforts tailored to urban and regional needs 

during heat waves and pandemic events. 

Achieving the Sustainable Development Goals 

(SDGs) 2030 requires implementing urgent strategies for 

reducing air pollution and extreme heat events adverse 

effects on human health. Such studies will be useful for 

understanding future transmission dynamics and lethality 

of other infectious diseases during hot summers in big 

cities worldwide. However, the complexities of sustainable 

urban development imply a complex analysis of several 

factors, including urbanization rate, spatiotemporal land 

cover changes, urban green infrastructure, air pollution 

and climate variability, natural and anthropogenic hazards, 

and geographic and socioeconomic conditions.  
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